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MECHANICAL PROPERTIES OF SILICON CARBIDE (SIC) THIN FILMS  
 

Jayadeep Deva Reddy 

ABSTRACT 

 

There is a technological need for hard thin films with high elastic modulus. Silicon 

Carbide (SiC) fulfills such requirements with a variety of applications in high 

temperature and MEMS devices. A detailed study of SiC thin films mechanical properties 

was performed by means of nanoindentation. The report is on the comparative studies of 

the mechanical properties of epitaxially grown cubic (3C) single crystalline and 

polycrystalline SiC thin films on Si substrates.  The thickness of both the Single and 

polycrystalline SiC samples were around 1-2 µm.  Under indentation loads below 500 µN 

both films exhibit Elastic contact without plastic deformation. Based on the 

nanoindentation results polycrystalline SiC thin films have an elastic modulus and 

hardness of 422 + 16 GPa and 32.69 + 3.218 GPa respectively, while single crystalline 

SiC films elastic modulus and hardness of 410 + 3.18 Gpa and 30 + 2.8 Gpa respectively. 

Fracture toughness experiments were also carried out using the nanoindentation 

technique and values were measured to be 1.48 ± 0.6 GPa for polycrystalline SiC and 

1.58 ± 0.5 GPa for single crystal SiC, respectively. These results show that both 

polycrystalline SiC thin films and single crystal SiC more or less have similar properties. 

Hence both single crystal and polycrystalline SiC thin films have the capability of 
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becoming strong contenders for MEMS applications, as well as hard and protective 

coatings for cutting tools and coatings for MEMS devices. 
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CHAPTER 1 

 

1.1       Introduction 

 

This chapter discusses in detail silicon carbide (SiC), hard coatings, thin films in MEMS 

devices, thin film deposition by Chemical vapor deposition (CVD) and advantages of 

CVD.  

 

1.2        An Overview of Silicon Carbide 

 

Silicon Carbide (SiC) has been used increasingly in electronic devices and Micro-

Electro-Mechanical Systems (MEMS) due to its capability of operating at high power 

levels and high temperatures. Another area that has benefited from the development of 

thin film technology is in the development of metallurgical and protective coatings [1, 2]. 

One of the challenges in micro level devices is providing corrosion resistance for such 

environments as biological systems or caustic gases. Silicon Carbide has been recognized 

as an ideal material for applications that require superior hardness, high thermal 

conductivity, low thermal expansion, chemical and oxidation resistance. Klumpp et. al. 

were the first to recognize the potential of silicon carbide for use in MEMS devices in 

1994 [3]. Since then, it has been used as protective coatings in harsh environment [3, 4]. 

Silicon carbide is a wide band gap semiconductor of choice for high-power, high 
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frequency and high temperature devices, due to its high breakdown field; high electron 

saturated drift velocity and good thermal conductivity.  

 

SiC is a wide band gap semiconductor.  It exists in many different polytypes. All 

polytypes have a hexagonal frame with a carbon atom situated above the center of a 

triangle of Si atoms and underneath a Si atom belonging to the next layer. The distance, 

marked as ‘a’ in Figure 1.1, between neighboring silicon or carbon atoms is 

approximately 3.08 Å for all polytypes, ‘C-Si’ is approximately 1.89 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The Tetragonal Bonding of a Carbon Atom With the Four Nearest 
Silicon Neighbors 
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The carbon atom is the center atom of a tetrahedral structure surrounded by four Si 

atoms; and the distance between the C atom and each Si atom (marked as C-Si in Figure 

1.1) is the same. 

 

The stacking sequence is shown in Figure 1.2 for the four most common polytypes, 3C, 

2H, 4H and 6H. There are three different layers referred to as A, B, and C in Figure 1.2.  

If the first layer is A, the next layer according to a closed packed structure will be layer B 

or C. The different polytypes can be constructed by any combination of these three 

layers. The 3C-SiC polytype is the only cubic polytype and it has a stacking sequence 

ABCABC… or ACBACB… 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.2. The Stacking Sequence of Double Layers in Most Common SiC 
Polytypes 
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The performance of SiC due to its high-temperature, and high-power capabilities makes it 

suitable for aircraft, automotive, communications, power, and spacecraft industries. 

These specific industries are starting to take advantage of the benefits of SiC in 

electronics. SiC films are used as high temperature semiconductors [5]. 

 

Thin films have several applications due to their improved mechanical properties, 

protection against chemical environments, radiation and mechanical wear. On the other 

hand thin films have been used due to their electrical and optical properties. SiC is 

suitable for both of these applications. 

 

1.3      Hard Coatings 

 

Hardness is an important property for thin films used in electronic, optical, and 

mechanical applications. Harder coatings also have higher wear resistance, also harder 

surfaces tend to have lower friction and lubrication has better results with harder surfaces 

[1]. Silicon carbide is covalently bonded, which is the reason for its high hardness.  

 

Hard coatings have been used successfully for two decades to protective materials, and to 

increase the lifetime and efficiency of cutting tools. Hard coated surfaces have been used 

to reduce the problems of chemical diffusion, wear, friction, oxidation and corrosion and 

effectively increase the life of the lithographie-galvanoformung-abformung (LIGA) 

microdevices [6-8] and other sensitive devices. Recently the performance and reliability 

of MEMS components were enhanced dramatically through the incorporation of 

protective thin-film coatings [9]. SiC hard coatings have helped to increase the efficiency 

of MEMS devices by protecting them from harsh environmental conditions.  
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1.4       Thin Films for MEMS Devices 

 

Most MEMS devices are restricted due to low operation temperatures, for example 

silicon devices are restricted to a maximum temperature of 250 °C and can be easily 

affected chemically. SiC is known for high thermal conductivity and electrical stability at 

temperatures higher than 300 °C [10]. This has been a vital breakthrough for reliability of 

MEMS devices in harsh environments.  

 

1.5       Thin Film Deposition 

 

There are various techniques for depositing thin films which can have a major affect on 

the mechanical properties of the film. The most common methods of depositing thin films 

are Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD). The main 

PVD processes are evaporation and sputtering. The CVD process involves making a 

volatile compound react with a material to be deposited with other gases; in this process a 

non-volatile solid gets deposited on a suitably placed substrate. SiC thin films can be 

deposited by CVD. A variety of carbide, nitride, boride films and coatings can also be 

deposited by this method [1].  

 

Physical vapor deposition (PVD) is a general term used to describe methods to deposit 

thin films by the condensation of a vapor onto the surfaces such as semiconductor wafers. 

This process involves evaporation at high temperature in a vacuum, or plasma sputter 

bombardment. In this chapter we focus mainly on the CVD process. 
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1.5.1 Chemical Vapor Deposition (CVD) 

 

CVD is a relatively old technique. The formation of soot due to incomplete oxidation of 

firewood since prehistoric times is probably the oldest example of CVD deposition. The 

industrial use of CVD could be traced back to a patent literature by de Lodyguine in 

1893, who had deposited W onto carbon lamp filaments through the reduction of WCl6 

by H2. Around this period, the CVD process was developed as an economically viable 

industrial process in the field of extraction and pyrometallurgy for the production of high 

purity refractory metals such as Ti, Ni, Zr and Ta. 

One of the important commercial reactions in CVD is: 

 

SiCl 4(g) + CH 4(g)               SiC(s) + 4HCl (g)      (1400 °C) 

 

for depositing hard wear resistant SiC surface coating. 

 

1.5.2 CVD Mechanism  

 

CVD can be performed in a ‘closed’ or ‘open’ system. In the ‘closed’ system, both 

reactants and products are recycled. This process is normally used where reversible 

chemical reactions can occur with a temperature difference. There is no universal CVD or 

standard CVD. Each piece of CVD equipment is individually tailored for specific coating 

materials, substrate geometry, etc., whether it is used for R&D or commercial production. 

In general, the CVD equipment consists of three main components: 

• Chemical vapor precursor supply system, 

•  CVD reactor, 
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•  Affluent gas handling system. 

The CVD equipment is designed and operated using optimum processing conditions to 

provide coating with uniform thickness, surface morphology, structure and composition. 

Suitable designs have taken into consideration the temperature control, reactant depletion, 

fluid dynamics and heat transfer in the system [11].  

 

In general, the CVD process involves the following key steps:  

• Generation of active gaseous reactant species;  

• Transport of the gaseous species into the reaction chamber;  

• Gaseous reactants undergo gas phase reactions forming intermediate species:  

 at a high temperature above the decomposition temperatures of intermediate 

species inside the reactor. Homogeneous gas phase reaction can occur where 

the intermediate species undergo subsequent decomposition and/or chemical 

reaction, forming powders and volatile by-products in the gas phase. The 

powder will be collected on the substrate surface and may act as 

crystallization centers, and the by-products are transported away from the 

deposition chamber.  

  at temperatures below the dissociation of the intermediate phase, 

diffusion/convection of the intermediate species across the boundary layer (a 

thin layer close to the substrate surface) occurs. These intermediate species 

subsequently undergo the following steps:  

• Absorption of gaseous reactants onto the heated substrate, 

followed by heterogeneous reaction at the gas–solid interface (i.e. heated 

substrate) which produces the deposit and by-product species. The 
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deposits will diffuse along the heated substrate surface forming 

crystallization centers followed by film growth. 

• Gaseous by-products are removed from the boundary layer through 

diffusion or convection. The unreacted gaseous precursors and by-

products will be transported away from the deposition chamber [11]. 

 

1.5.3 Advantages of CVD 

 

CVD has the following distinctive advantages over other methods:  

• It has the capability of producing highly dense and pure materials.  

• CVD method has high reproducibility and deposits films uniformly at a 

reasonable deposition rates. It can be used to uniformly coat complex shaped 

components and deposit films with good conformal coverage. Such distinctive 

feature outweighs the PVD process.  

• It has the ability to control crystal structure, surface morphology and orientation 

of the CVD products by controlling the CVD process parameters like temperature 

of the system, flow of precursor gas, and flow of carrier gas.   

• Rate of deposition can be easily controlled. CVD at lower deposition rates yields 

epitaxial thin films for MEMS applications. For thick protective coatings, a high 

deposition rate is preferred and the deposition rates can be tens of μm per hour. 

Many techniques cannot achieve higher deposition rates, except plasma spraying. 

• CVD is more economical in the field of thin film technology compared to other 

techniques. 
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• CVD allows the deposition of a large spectrum of materials including, metals, 

carbides, nitrides, oxides, sulfides, III–V and II–VI materials by using a wide 

range of chemical precursors such as halides, hydrides, and organometallics.  

• Relatively low deposition temperatures and the desired phases can be deposited 

in-situ at low energies through vapor phase reactions, and nucleation and growth 

on the substrate surface. This enables the deposition of refractory materials at a 

small fraction of their melting temperatures. Silicon carbide can be deposited at a 

lower temperature of 1000 °C using chemical reactions rather than doing it at 

higher temperatures. 

• Relatively low deposition temperatures and energies. Using CVD the desired 

phases can be deposited in-situ at low energies through vapor phase reactions, and 

nucleation and growth on the substrate surface. This enables the deposition of 

refractory materials at a small fraction of their melting temperatures. Silicon 

carbide for example can be deposited at a temperature of 1000 °C using chemical 

reactions; this is less than temperatures used on other processes. 

 

Table 1, shows important properties of SiC and compares them to other MEMS materials. 

Among the materials of interest SiC has a better thermal conductivity, Hardness, Young’s 

Modulus and physical stability compared to Silicon or Gallium Arsenide. These 

properties give an advantage to SiC thin films.  It can be noted from the table that SiC has 

a reasonably high electron mobility and large bandgap. SiC devices have been effectively 

operating at higher temperatures up to 600 °C, while the most commonly used and 

available semiconductor Si could operate only at temperatures of around 200 °C [1, 2]. 

These properties make SiC more appealing in the field of MEMS, hard coatings, medical 
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applications, biotechnology, chemical sensors and other electronic applications. The 

advantages of SiC over the other MEMS material has led to more research in the recent 

years. 

 

Table 1. Properties of MEMS Materials 

 

Properties/ Material 

 
3C-SiC 

 

 
Si 
 

GaAs Diamond 

Bandgap Eg (eV) 2.4 1.1 1.4 5.5 

Thermal Conductivity (W/cm ̊C) 5 1.5 0.5 20 

Thermal Expansion ( 10 -5 /  ̊C) 4.2 2.6 6.88 1 

Hardness (GPa) 35-45 12 7 70-80 

Electron Mobility (cm2/ Vs) 1000 1400 8500 2200 

Young's Modulus (GPa) 448 190 75 1041 

Physical Stability Excellent Good Fair Excellent 

Breakdown Voltage (105 V/ cm) 4 0.3 0.4 10 
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1.6       Research Objective 

 

The main objective and goal of the present research is to determine the mechanical 

properties of the single crystal and polycrystalline SiC thin films.  
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CHAPTER 2 

 

2.1  Mechanical Characterization of Thin Films 

 

The main objective of this chapter is to review various methods used for thin film 

mechanical characterization. There is a large variation in the mechanical properties of 

thin films due to various conditions in the deposition process among other factors. To 

increase the lifetime and reliability while maintaining cost effectiveness, characterization 

of mechanical properties is necessary.  

 

Mechanical properties measurements play an important role in thin film industries 

because the properties of thin films can differ substantially from the bulk mechanical 

properties [13, 14]. In recent years there has been considerable interest in the mechanical 

properties of materials at the micro and nano scales. This is motivated partly by interest 

in inherently small structures such as thin film systems, Micro Electro Mechanical 

Systems (MEMS), and small-scale composites, and partly by newly available methods of 

measuring local mechanical properties in small volumes [15]. The test techniques that 

were used to determine the mechanical properties of the bulk materials cannot be directly 

applied to measure the mechanical properties of thin films. Therefore, several new 

methods have been developed to study the mechanical properties of thin films, which 

include the bulge test, micro tensile testing, beam deflection techniques, nanoindentation 

or depth sensing technique and resonance testing to name a few. 
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2.1.1  Bulge Test 

 

The Bulge test is one of the most versatile tests. It can be used to characterize the residual 

stress, elastic modulus, and other important parameters such as yield strength and fracture 

toughness.  Bulge testing is one of the most promising testing methods to determine the 

Young’s modulus, residual stress and Poison’s ratio. In Bulge testing the substrate is 

locally removed by etching, and a thin film diaphragm is left behind. The basic principle 

of the bulge test is to pressurize the diaphragm up to the desired maximum pressure, and 

observe interference patterns on the bulging film [16]. 

 

Figure 2.1, shows a schematic for the experimental setup of the bulge test. Pressure is 

applied to obtain the load-deflection response. The film whose properties are to be 

measured is placed on top of the chuck and adhered strongly using hard wax or epoxy. A 

pressure manifold is attached to the chuck through the minute hole provided. As pressure 

is applied the film deflects and fringes are formed as shown in Figure 2.2. These fringes 

are observed through the lens of the microscope/interferometer placed on top of the 

bulging film. Now, the pressure is gradually decreased to atmospheric level, during the 

decrease in the pressure the number of fringes that were formed also decreases. With 

each decreasing fringe, the pressure is recorded, and load versus deflection graphs are 

plotted.  
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Figure 2.1. Schematic Representation of Bulge Testing Experimental Setup 

 
 

Figure 2.2. Circular Interference Patterns Used to Measure Deflection of Bulging 
Film [16] 
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Using the bulge test, the deflection of the thin film is measured as a function of applied 

pressure. The residual stress and Young’s modulus E values are then extracted from the 

linear and cubic coefficients of equation (1). Using a least-square fit, equation (1) can be 

used to extract the residual stress and Young’s modulus for circular, square, and 

rectangular diaphragms [16]: 

 

 

                

( )
⎥⎦
⎤

⎢⎣
⎡

−
+= 2

020102 1
WE

a
fCW

a
tP

ν
νσ

                                                 (1), 

 

 

where σ0 = residual stress; P = pressure; t= film thickness; 2a = diaphragm width or 

diameter; W0 = maximum center deflection; C1= constant; v = Poisson’s ratio; and f (ν) = 

function of Poisson’s ratio[16].  

 

The bulge test is a potentially powerful tool for characterizing thin film mechanical 

properties but is not utilized that much because of its sensitivity to experimental error and 

tedious sample preparation. 

  

2.1.2  Micro-Beam Bending  

 

In a bending test the force required to deflect the beam is much smaller than the force 

required for a tensile test or an indentation test.  In a tensile test the force does not result 

in a visible displacement, whereas in bending  the same force yields a displacement that 

is large enough to be measured optically (e.g. laser interferometer) or mechanically (e.g. 
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surface profilometer or nanoindenter) [17].  Microbeam deflection tests have been used to 

investigate thin film elastic modulus, and yield stress of the beam material. Microbeam 

deflection tests are done by a nanoindenter using its load and displacement monitoring 

system. By applying the basic theory of beam deflection one can determine the Young’s 

modulus and yield stress. This method can be applied to free-standing films as well as to 

films on substrates [15].  

 

Bilayer beams consisting of a substrate and a thin film are fabricated using conventional 

deposition techniques. The films are then patterned using standard photolithography 

processes, followed by anisotropic etching, rinsing, and drying. The final structures 

consist of cantilever beams extending over an open trench. Beam deflection can be 

performed by various methods. The most common method for beam deflection 

measurements is commercial load and depth-sensing indentation instrument capable of 

precise positioning of indentations.  

 

Figure 2.3, shows a cantilever beam of length L with a point load F at its end. The 

deflection of the cantilever beam is: 

 

IE
FLY *

3

max 3
=             (2), 

 

where F is the applied force, L the length of the cantilever, I = wt3/12 is the relevant 

second moment of inertia of the beam, w the beam width, t the beam thickness. E* = Eφ, 

where φ is the anticlastic (saddle-like) correction factor. φ = 1 when the beam is long 

enough, and the plane-strain conditions along the beam width apply. This is the basic 
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bending mechanism used in simple beam deflection devices to obtain the Young’s 

modulus.  

 

 

 

 

Figure 2.3. Simple Beam Deflection Schematic 

 

 

The equation (2) is only valid to extract the ideal Young’s modulus of the beam. 

However, some other effects such as undercut and anticlastic effects add some additional 

terms to equation (2). In this case the beam length, L, is replaced by (L + LC) in equation 

(2), where LC is the required length correction. Thus we get an effective Young’s 

modulus by replacing L in equation (2) with the corrected length.  

  

2.1.3  Micro Tensile Test   

 

The tensile test is the most efficient method because it directly measures elastic modulus, 

fracture strength and Poisson’s ratio [18]. A simple schematic of the micro tensile testing 

Thin film of 
thickness ‘t’ L F 

Y 



www.manaraa.com

 
 

18

machine is shown in Figure 2.4. This experimental setup was used by K.M. Jackson et. 

al. [19] and W.N. Sharpe Jr. et. al. [20] to measure the mechanical properties of thin 

films. The specimen was placed in the grips, aligned and fixed in place with an ultraviolet 

cured adhesive. The specimen was elongated with a piezoelectric actuator until it failed, 

and then the strain was measured with a laser-based direct strain measurement device 

called the interferometric strain displacement gage (ISDG) [21].  

 

 

 

 

Figure 2.4. Schematic of Micro Tensile Testing Machine  

 

This system worked extremely well for polycrystalline silicon and several other 

materials. But this system was not used for SiC because the difficulty in fabricating 

similar specimens created a greater challenge. Ironically, the same characteristics that 

make thin-film silicon carbide a viable alternative to polycrystalline silicon also make it a 
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difficult material to fabricate using conventional microfabrication tools. Micromolding 

was used to fabricate the SiC specimen in this case [19]. 

 

2.1.4  Scratch Test  

 

Scratch testing is a combination of two operations: a vertical indentation motion and a 

horizontal dragging motion. In scratch testing the tip is dragged horizontally while 

simultaneously the load is increased in the vertical direction, which leaves a scratch mark 

on the thin film. This process may also detach the thin film from the substrate. Figure 2.5, 

shows how the system works based on the three plate capacitor system. The 

Triboindenter has sub-nanometer depth resolution due to its highly sensitive three plate 

capacitive transducer. The tip displacement and load are measured by a three plate 

capacitance system as shown in Figure 2.5.  The piezoelectric scanner provides precisely 

controlled X, Y, and Z indenter tip position.  The piezoelectric scanner moves the tip over 

a specimen, while a feedback loop controls the Z-axis height of the scanner to maintain a 

constant force between the indenter tip and the specimen. The Z-axis movement of the 

scanner is then calibrated to obtain a three dimensional topographical image [23]. This 

technique is used to either do indentation or scratch on the specimen. 
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Figure 2.5. Hysitron Three Plate Capacitor Transducer 

 

Hardness of the thin film can be calculated by measuring the scratch width b, shown in 

Figure 2.6. The scratch morphology on a gold film can be seen in Figure 2.6. This width 

b is used in equation 3 to determine the hardness of the material: 

             

        2

8
b
FH N

π
=

                                                                  (3),
 

 

where FN is the normal applied load and b is the scratch track width. 
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Figure 2.6. Scratch Morphology on Gold Film 

The critical normal load measured is used to calculate the practical work of adhesion of 

the film to the substrate [13]: 

   

                                                                                                                                          (4), 
 

where r is the contact radius, E is the elastic modulus of the film, W
A, P 

is the practical 

work of adhesion and h is the film thickness. Equation (4) applies only when the thin film 

delaminates due to normal applied force, and does not account for the residual stress in 

the thin film.  

 

2.1.5  Nanoindentation  

 

There are various methods used as mentioned in the above sections to determine the 

mechanical properties of thin films. Bulge test, micro-beam bending, micro tensile test 

[2], nanoindentation, etc., are a few methods used to determine the mechanical properties  
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for the thin films.  Nanoindentation is widely accepted method used to determine the 

mechanical properties of thin films. 

 

Nanoindentation is a very successful way for measuring the elastic modulus and hardness 

of thin films [22], the goal of the majority of nanoindentation tests is to determine the 

elastic modulus and hardness from load-displacement measurements [23]. However, it 

can also be used to measure thin film adhesion, and fracture toughness.  

 

General hardness testing machines allow measuring the size of the residual plastic 

impression on the specimen as a function of the indenter load. This gives the area of the 

residual imprint for an applied load; which is on the order of few square microns, and can 

be measured using optical techniques. In the nanoindentation method, the tip penetration 

depth is measured as the load is applied to the indenter.  Knowing the geometry of the 

indenter allows the size of the area of contact to be determined. The depth of the 

impression is on the order of tens of nanometers. The modulus of the material can be 

obtained from the measurement of the unloading stiffness i.e., the rate of change of load 

and depth.  

 

The advantage of nanoindentation over other methods is that it is a relatively simple and 

direct method. Nanoindentation is the process in which a sharp indenter is forced in to the 

sample of interest and withdrawn. Figure 2.7, gives the schematic of the Nanoindenter 

used for testing the mechanical properties of thin films.   
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Figure 2.7. Schematic of the Nanoindenter (Triboindenter) 

 

In nanoindentation, depth sensing techniques are used where the modulus of the 

specimen is obtained from the slope of the initial unloading portion of the load-

displacement curve. The modulus obtained from the sample is defined as reduced, 

contact, or indentation modulus. Nanoindentation and measurement of mechanical 

properties of thin films using Nanoindentation is further explained in detail, in Chapter 3.  
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CHAPTER 3 

 

3.1  Nanoindentation 

 

This chapter provides a brief introduction to the Hysitron Triboindenter, and various 

applications of nanoindentation measurements, including hardness, Young’s modulus and 

other mechanical properties.  

 

3.1.1 Hysitron Triboindenter 

 

The Triboindenter is one of the most advanced machines for testing mechanical 

properties; it is a fully automated multi-load range indentation/scratch testing system 

designed for measuring hardness, elastic modulus and dynamic viscoelastic properties of 

thin films. The Hysitron Triboindenter was developed to operate in quasi-static or 

dynamic loading modes and has optional acoustic emission testing capabilities. The most 

distinguishing feature of Triboindenter is it has a low noise floor, making it possible to do 

shallow indentations of the order of 10 nm or less and piezoelectric topography in-situ 

scanning of pre and post indentation features on the specimen surface. 

 

This high-performance staging system showed in Figure 3.1 offers superior stability and 

flexibility to accommodate a wide range of applications, sample sizes and types. It uses a 

patented transducer shown in Figure 2.5. This transducer is the heart of the Hysitron 
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indenter, the force applied is an electrostatic force while the displacement is measured by 

the change in capacitance. This electrostatic actuation does not use much current, which 

makes it virtually drift-free due to low heating during actuation. 

 

 

 

 

 

Figure 3.1. Triboindenter Main Unit (Hysitron Inc) 

 

This patented three-plate capacitor technology provides simultaneous actuation and 

measurement of force and displacement [24]. The Triboindenter can be operated in both 

open loop or closed loop displacement or force control modes. This means that the user 

chooses the mode of operation and amount of force or displacement that will be applied 

by the indenter [25]. Hysitron comes with a high load module which can perform 

indentations up to a load of 2 N. 
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3.2  Testing of Thin Films 

 

Elastic modulus E, and hardness, H are the thin films properties most frequently 

measured in a nanoindentation experiment. Through nanoindentation one can obtain both 

qualitative and quantitative data from a thin film system. The major misinterpretation of 

data in nanoindentation arises when the tip indenter unintentionally probes the substrate. 

In order to avoid this misinterpretation, the maximum depth of penetration has to be 

restricted to 10% of the film thickness [26]. Some of the important factors that need to be 

taken care of while using nanoindentation are described in the following paragraphs. 

 

3.2.1  Tip Geometry 

 

In this thesis experiments were performed using Berkovich indenter tip. It has a face 

angle of θ = 65.27° , which has the same projected area-to-depth ratio as the Vickers 

indenter. However, the original Berkovich indenter had a different angle of 65.03 , 

although it gives the same actual area-to-depth ratio as the Vickers indenter as well [27]. 

For a Berkovich indenter the projected contact area A is given by equations (6) and (7): 

 

°= 27.65tan33 22
chA                                                                              (6), 

25.24 chA =                              (7), 

 

where hc is the contact depth. Figure 3.3 gives the profile of the film surface before and 

after indentation. All values obtained from a quasi-static nanoindentation analysis depend 
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on accurate knowledge of the shape of the indenter tip. Thus the tip shape function A(hc) 

must be determined. 

 

 

  

 

 

 

Figure 3.2. Profile of the Film Surface Before and After Indentation 

 

In nanoindentation, the contact area at hc is not accurate or may be valid only for the ideal 

geometry of the indenter tip. In reality the tip geometry varies, so in order to get reliable 

data one needs to obtain the tip area function which takes into consideration the true 

shape of the indenter tip. This is explained in the following paragraphs. 

 

3.2.2  Tip Shape Function 

 

There are various methods used to find the tip shape function. The most precise but 

impractical way is by measuring the residual contact area in the Transmission Emission 

Microscope using the replica method. Other methods are to image the tip of the indenter 

with a scanning force microscope (SFM). However, in this case the tip shape of the SFM 

must be accurately known to assess the final shape of the tip which is being imaged. The 

most prevalent and practical solution to find out the tip shape is by carrying out 

indentations on various materials with known elastic properties. An iterative procedure is 

hmax hc hf 

Pmax 
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used to find the compliance of the machine and the tip area function [28]. In this case the 

experimental data are often fitted using equation (8): 

16
1

5
8
1

4
4
1

3
2
1

21
2

0)( ccccccc hChChChChChChA +++++=                    (8), 

In case of an  ideal Berkovich diamond indenter C0 should be set to 24.5. In general it is 

preferable to use as few coefficients as possible. To calculate both the elastic modulus 

and hardness the projected contact area is required.  At large contact depths the ideal tip 

area function, mentioned in equation (7) can yield accurate results, whereas at low 

contact depths the actual tip geometry must be taken into account to get accurate results. 

Since the indents are small, the area of the indent cannot be measured directly, or by 

optical microscopy. In order to find the contact area, a number of indents are made in 

samples with known elastic properties. This contact area is then calculated from the 

empirical formula, A = f (hc), which relates the projected contact area (A) is a function of 

the contact depth (hc). 

 

To determine the tip area function of the indenter tip, multiple indents are made in (100) 

silicon which has the elastic modulus of 174 GPa.  Figure 3.3 shows contact area 

variation with the contact depths. Figure 3.4, shows us the plot between contact depth and 

0contact area. 
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Figure 3.3. Topographic Image at Various Contact Depths 

 

Figure 3.4. Contact Area Plot With Respect to the Contact Depth of the Tip 

 

Figure 3.5 shows the plots obtained for the load-displacement curves for Si (100) 

performed at different loads. The residual impressions of the indenter on the silicon 
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surface can be seen in Figure 3.4.  In this procedure, 25 indentations were made starting 

from 400 µN maximum load to 10 mN load with an increment of 400 µN to have the full 

range of required displacements. From the known values of Si properties, one can relate 

contact depths to contact area of the tip for various depths from the empirical fit of 

equation (8). This area function is used to determine hardness and elastic modulus for 

unknown materials. 

 

 

Figure 3.5. Multiple Load-Displacement Curves Obtained From Indenting 
(100) Si 

0

4000

8000

0 100 200

Lo
ad

 (µ
N

)

Depth (nm)

P max

S



www.manaraa.com

 
 

31

3.3  Measurement of Elastic Modulus 

 

The most common method for measuring hardness and modulus using nanoindentation 

methods involves making a small indentation in the film, while continuously recording 

the indentation load, P, and displacement h, during one complete cycle of loading and 

unloading. Stiffness of the contact between the indenter and the material being tested is 

required to determine the mechanical properties of interest. The stiffness, S, is 

determined from the initial slope of the unloading curve. S = dP/dh, where P is described 

by the power relation given by Oliver and Pharr [22]: 

 

 

P = A(δ - δpl)m                                                                            (9), 

 

where A and m are fitting parameters, P and δ are the load and displacement taken from 

the top 65% of the unloading curve.  The loading and unloading portion can be seen in 

Figure 3.6 
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Figure 3.6. Schematic of Load-Displacement Curve for Depth Sensing Indentation 
Experiment 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7. Schematic of Indentation Cross-Section Showing Various Parameters 
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Various indent parameters are shown in Figure 3.7. The indent cross-section explains the 

residual imprint of the indent after unloading. One can also observe the elastic recovery, 

which gives a clear picture of surface profile at the maximum load.  Once the stiffness is 

measured using equation S = dP/dh, the reduced modulus can be determined as: 

A
SEr 2

π
=                                                                            (10), 

where Er is the reduced modulus, which accounts for the measured elastic displacement 

contributing from both the sample and the indenter tip. The reduced modulus can be used 

to calculate the actual modulus of the sample, which is given by: 

Tip

tip

sample

sample

r EEE

22 111 νν −
+

−
=                                                   (11), 

 

where Etip = 1140 GPa and Vtip = 0.07 are the elastic modulus and Poisson’s ratio for 

diamond tip, respectively. From this equation we can calculate the E sample for the given 

sample. 

 

3.4  Hardness  

 

Hardness is the resistance to the plastic deformation and it is given by:  

A
P

H max=                                                                                  (12), 

where Pmax is the maximum load and A is the projected area of contact or hardness 

impression. The effect of indentation depth on hardness measurement has been a real area 
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of concern. When low loads are applied the resultant area of contact might be very small 

or sometimes it recovers elastically with no residual impression left behind. This gives an 

exaggerated hardness value. The most common method to determine the hardness of a 

material is by static indentation.  Hardness can also be determined using scratch hardness 

testing using the same nanoindentation machine. This method is explained in detail in 

section 2.1.4. 

 

Precautions should be taken in order to avoid discrepancies in calculating mechanical 

properties from nanoindentation data. Indents should not be made too deep into the thin 

film as the substrate effects may be noticed [29]. In an attempt to avoid substrate effect 

on thin film elastic modulus and hardness, often excessively shallow indents are made 

into the thin film.  By taking indents that are not deep enough, the elastic modulus and 

hardness measurements will be inaccurate. This inaccuracy is due to surface roughness, 

possible oxidation effects and errors in assessing the tip contact area [30]. 

 

3.5  Fracture Toughness  

 

Since a nanoindenter is a versatile machine it can be used to evaluate the fracture 

toughness of a given bulk material. Small cracks on the surface of thin films can be 

induced when higher loads are applied. These patterns of cracks are used to assess the 

film fracture toughness. Cracks come in different morphology depending on the 

indentation load, tip indenter geometry and material properties. The most common kind 

of cracks are radial cracks for brittle and hard materials [31, 32]. Figure 3.8, shows the 

schematic of load-induced radial cracks propagating from indentation using a Berkovich 
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tip. Fracture toughness is calculated from equation (13), this is the most widely used 

relationship [31]: 

2
3

2
1

C

P
H
EAK c ⎟

⎠
⎞

⎜
⎝
⎛=                                                           (13), 

where, Kc is the fracture toughness, P is the maximum load, C is the crack length, E is the 

elastic modulus and H is the hardness, A is an empirical constant, for the Berkovich tip it 

is 0.016[23]. 

 

 

 

 

 

 

 

 

 

Figure 3.8. Schematic of the Radial Cracks Induced by Berkovich Indenter 

 

Generally there are three types of cracks, radial cracks, lateral cracks, and median cracks. 

Radial cracks occur on the surface of the specimen at the corners of the indenter edge 

marks. These cracks are generally formed due to the hoop stress. Figure 3.8, shows a 

schematic of radial crack propagation at the edges of the indenter contact site. Lateral 

C 

Indenter contact area 
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cracks are cracks which occur beneath the surface. These cracks are generated by tensile 

stress and often extended to the sample surface. Median cracks are circular penny shaped 

cracks that are formed beneath the surface and along the line of symmetry. Fracture 

mechanics treatment of these types of radial and lateral cracks is useful to provide the 

fracture toughness based on the length of radial cracks [33].  

 

3.6  Hertzian Contact Theory 

 

In nanoindentation the most predominantly used indenter tip is the Berkovich tip, which 

has the shape of a three-sided pyramid. Berkovich indenters are not perfectly sharp. The 

most common assumption is to describe the Berkovich indenter as spherical at its tip 

[34]. However, since the radius R of the tip is not known, most users use the tip radius 

specified by the manufacturer [35]. These assumptions are subjected to great uncertainty 

since the indenters can wear out and change their tip geometry.  To avoid such errors 

some researchers have directly measured the tip radius by scanning the tip using atomic 

force microscopy or by scanning electron microscopy [36]. 

 

Another popular approach to determine the radius of the tip is to fit the load-displacement 

curve with the Hertzian equation. The stresses and deflection arising from the contact 

between two elastic bodies are of particular interest for indentation testing. Hertz found 

that the radius of the circle of contact ‘a’ is related to the indenter load P, the indenter 

radius R, and the elastic properties of contacting materials by equations (14) and (15): 

Hertz originally derived the equation for two cylinders in contact; this theory is applied to 

the spheres in this case. 
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rE
PRa

4
33 =

                                                                                   (14), 

 

2
3

2
1

3
4 hREP r=                                                                   (15), 

 

 

where P is the indenter load, h is  the displacement, and Er is the reduced modulus, [37] 

which can be determined from equation (11). Once the radius is known the stresses in the 

material can be evaluated from the Hertzian contact mechanics as a function of applied 

load. In this research we establish the tip radius using the Hertzian curve fit. Figure 3.10, 

gives the Hertzian fit for the loading curve of a thin film sample which was indented 

using the Berkovich tip. 
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Figure 3.9. Comparison of Elastic Load-Displacement Data and the Hertzian Curve 
Fit 

 

This Hertzian curve fit was obtained from indentitions made in the SiC thin films. To find 

the radius of the tip, experiments were done at low loads up to 500 µN to obtain complete 

elastic load-displacement curves as shown in Figure 3.10.  
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Figure 3.10. Elastic Load-Displacement and the Hertzian Curves Obtained From 

SiC Thin Films 
 

From Figure 3.11, one can observe that the Hertzian curve fit was done on both single 

crystal and polycrystalline SiC elastic load-displacement curves to extract the radius of 

the Berkovich indenter. The radius of the tip was found to be approximately 100 – 110 

nm.  This indenter tip is used in the experiments done, which is explained in chapter 4. 
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CHAPTER 4 

 

4.1 Mechanical Characterization of SiC Using Nanoindentation 

 

This chapter deals with growth of single crystal and polycrystalline SiC and experiments 

performed on the single crystal SiC, polycrystalline SiC, bulk SiC (Lely Platelet SiC), 

and bulk Si (100) films using Hysitron Triboindenter. This chapter talks about sample 

preparation, experimental setup and the obtained results. 

 

4.1.1 Sample Preparation 

 

Two samples were studied and their mechanical properties such as elastic modulus, 

hardness and fracture toughness were compared. The samples used for the comparative 

study were single crystal 3C-SiC and polycrystalline SiC, grown by heteroepitaxy 

chemical vapor deposition. Film thickness of the samples were around 1-2 µm. 

 

4.1.2 Growth of Single Crystal 3C-SiC Films  

 

The most common technique used to grow crystalline films epitaxially is CVD. 3C-SiC 

single crystal films were grown on 50-mm diameter (100) Si wafers using hot-wall CVD. 

The design of the CVD reactor can be found elsewhere [38]. The 3C-SiC on Si growth 

process was developed using the two step carbonization 



www.manaraa.com

 
 

41

and growth method. C
3
H

8 
and SiH

4 
were used as the precursor gases to provide the 

carbon and silicon sources, respectively. Ultra high purity (UHP) hydrogen, purified in a 

palladium diffusion cell, was employed as the carrier gas. Prior to growth, the samples 

were prepared using the standard RCA cleaning method [39], followed by a 30 second 

immersion in diluted hydrofluoric acid (HF), to remove surface contaminants and native 

oxide. The first stage of the process, known as the carbonization step, involved heating 

the reactor from room temperature to 1140 °C at atmospheric pressure with a gas flow of 

6 standard cubic centimeters per minute (sccm) of C
3
H

8 
and 10 standard liters per minute 

(slm) of H
2
.  The temperature was then maintained at 1140 °C for two minutes to 

carbonize the Si substrate surface. After carbonization, SiH
4 

was introduced into the 

system at 4 sccm and the temperature increased to growth temperature of 1375 ºC, and 

gas pressure of 100 Torr was maintained for approximately 5 minutes. The temperature 

and other flow rates were maintained constant during the growth process. By this 

procedure, a sample 2 µm thick 3C-SiC was grown. 

 

 After the growth process was completed, the wafer was cooled to room temperature in  

Ar atmosphere [13]. After deposition the film thickness was measured by Fourier 

Transform infrared transform (FTIR) and confirmed by scanning electron microscopy. 

The crystal orientation of the film deposited was determined by X-ray diffraction (XRD) 

using a Philips X-Pert X-ray diffractomer. XRD data proved that the films were single 

crystal. Figure 4.1, shows the rocking curve obtained from the (200) planes for 3C-SiC 

grown on (100) Si. This data confirms the film is single crystal 3C-SiC. 
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Figure 4.1. Rocking Curve From the (200) Planes of 3C-SiC Grown on Si (100)  

 

4.1.3 Growth of Polycrystalline 3C-SiC Films 

 

Polycrystalline growth follows the same procedure as single crystal SiC with the 

exception of a higher gasses flux. The process conditions for the samples studied here 

were identical to those listed above except that the SiH4 and C3H8 mass flow rates were 6 

sccm and 4 sccm, respectively. This process resulted in a polycrystalline-3C-SiC film. 
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4.2 Experiments and Results  

 

This section explains the results obtained from the experiments conducted using the 

nanoindenter and the analysis of the data to determine the mechanical properties. 

Samples of same film thickness (2 µm) were used to conduct the experiments. The 

samples tested were 3C-SiC single crystal grown on Si (100). This sample had a good 

optical-quality-smooth-surface requiring no further polishing. On the other hand, the 

deposited polycrystalline sample was rough and needed mechanical polishing. The 

sample was polished using a 1 µm pad with Leco® diamond paste to smooth the film 

surface and reduce the film thickness to match the thickness of the single crystal SiC film 

(2 µm). These samples were then cleaved and glued to the sample holders using 

cyanoacrylate (Super glue).  

 

The Berkovich indenter was used for all indentation tests. This is the best tip for most 

bulk samples, unless the RMS roughness is higher than 50 nm [25]. Load controlled 

indentations were performed to determine films elastic modulus and hardness. 

 

4.2.1 Surface Polishing  

 

Polycrystalline SiC was polished since its as-deposited surface was too rough, and 

indentation experiments were not giving matching load-displacement curves. Figure 4.2, 

shows the root mean square roughness, average roughness, and peak-to-valley height 

before polishing. Figure 4.3, is the 3D image of the as-deposited polycrystalline specimen 

before polishing. Figure 4.4, gives an insight as to why polycrystalline SiC had to be 

polished before doing experiments.  



www.manaraa.com

 
 

44

The uneven loading and unloading curves were observed on this specimen mainly 

because of the coarse surface where the tip slips between the peaks and the valleys of the 

film surface. This excessive surface roughness was giving unrepeatable results; in order 

to obtain repeatable loading and unloading curves the specimen was polished with 1 

micron diamond paste. After polishing the topographic scans were taken and the 

indentation experiment was repeated for the same maximum loads.  

 

 

 

Figure 4.2. RMS Roughness and Average Roughness Values of the Unpolished SiC 

 

 

 

 



www.manaraa.com

 
 

45

 

 

 

 

 

 

 

Figure 4.3. Topographic Image of the Polycrystalline SiC Before Polishing 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Load-Displacement Curves Before Polishing 
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Figure 4.5, gives the RMS roughness, average roughness, and peak-to-valley height of 

the polycrystalline SiC after polishing. Figure 4.6, is the topography image of the SiC 

after polishing and Figure 4.7, shows the load-displacement curves obtained after 

polishing. Before polishing the average roughness was 44.4 nm, and the RMS roughness 

was 53.9 nm. After polishing the average roughness was 1.5 nm, and RMS roughness 

was 2 nm. 
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Figure 4.5. RMS Roughness and Average Roughness Values After Polishing 
Polycrystalline SiC 

 

 

 

 

 

 

 

 

 

Figure 4.6. Topographic Image of the Polycrystalline SiC After Polishing 
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Figure 4.7. Load-Displacement Curves After Polishing Polycrystalline SiC 

 

4.2.2  Analysis of Hardness and Elastic Modulus for SiC  

 

Standard low load transducer, which can apply a maximum load of 10 mN, was used to 

find the elastic modulus (E) and hardness (H) of the deposited films. The experiment was 

carried at loads varying between 500 µN to 10 mN on both the single crystal and 

polycrystalline SiC samples. The load-displacement curves obtained from single and 

polycrystalline SiC films are compared in Figures 4.8 and 4.9. The hardest materials of 

the two has less penetration depth for the same load, hence polycrystalline SiC is harder. 

 

 

0

4000

8000

0 40 80 120

Polycrystalline SiC
After Polishing

Lo
ad

 (µ
N

)

Depth (nm)



www.manaraa.com

 
 

49

From Figure 4.8, it can be inferred that at lower load both the single and polycrystalline 

samples exhibit similar elastic contact.  Also elastic load-displacement curves helps in 

determining the radius of the indenter tip used in performing the nanoindentation 

experiments, by using the Hertz theory of elastic contact [16, 24]. Using high loads 

varying from 5mN to 10 mN we saw the plastic deformation in the film. Figure 4.10 

shows the indentation done at a load of 10 mN, from which it can be inferred that the 

indenter penetrated more into the single crystal SiC than polycrystalline SiC.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8. Load-Displacement Curve at a Load of 1 mN (a) Polycrystalline SiC 

(b) Single Crystal SiC 
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Figure 4.9. Load-Displacement Curve at 10 mN (a) Polycrystalline SiC (b) Single 
Crystal SiC 

 

Figure 4.10 and Figure 4.11, shows the hardness and modulus values of respective SiC 

films at various loads obtained from nanoindentation tests. Reduced modulus values of 

the thin film obtained from the nanoindentation are calculated using the equation (11). 
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Figure 4.10. Hardness of Single Crystal and Polycrystalline SiC as a Function of 
Indentation Depth 
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Figure 4.11. Modulus of Single Crystal and Polycrystalline SiC as a Function of 
Indentation Depth 
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Figure 4.12, Shows the load displacement curves for Lely-Platelet 15R- SiC (Bulk SiC), 

polycrystalline SiC, single crystal SiC and Si (100) at 10 mN.  Table 2 gives the hardness 

and modulus values for 15R- SiC (Bulk SiC), polycrystalline SiC, single crystal SiC and 

Si (100) obtained using nanoindentation. 
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Figure 4.12. Load-Displacement Curves for Bulk SiC, Single Crystal, and 
Polycrystalline 3C-SiC Films and Bulk Si (100) 
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Table 2. Mechanical Properties of Single Crystal SiC, Single Crystal Si, 
Polycrystalline SiC and Bulk SiC (Lely Platelet SiC) 

 
 

 Hardness (GPa) Elastic Modulus (GPa) 

Silicon (100) 12.46 + 0.78 172.13 + 7.76 

Lely platelet 15R-SiC 42.76 + 1.19 442 + 16.34 

Single crystal 3C-SiC 30 + 2.8 410 + 3.18 

Polycrystalline 3C-SiC 32.69 + 3.218 422 + 16 

 

4.2.3  Fracture Toughness Analysis  

 

To determine the fracture toughness (K), low load transducer was replaced with high load 

transducer. The indentation procedure mentioned in Chapter 3 was followed at higher 

loads ranging from 100 mN to 500 mN. 

 

Figures 4.13 and 4.14 show the microscopic images of cracks induced at higher loads in 

polycrystalline and single 3C-SiC films, respectively. Crack length was used to calculate 

the fracture toughness of the thin films using equation (13). The radial cracks were 

generated along the sharp corners of the Berkovich tip used for indentation. Table 3, 

shows the values of fracture toughness of respective SiC samples. The cause for the low 

values of fracture toughness in this case was due to the tip penetrating into the substrate.  
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Figure 4.13. Radial Cracks in Polycrystalline SiC Film 
 

 
 

Figure 4.14. Radial Cracks in Single Crystal SiC Film 
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Table 3. Fracture Toughness Values for Single Crystal and Polycrystalline SiC 
 

 

 
 
 

 
From Figure 4.13, we can see that the cracks of the single crystal SiC are propagating 

along the cubic planes. Same effect is not noticed in the polycrystalline SiC Figure 4.14, 

since they do not have specific cubic planes to further propagate the crack very easily.

 

 
Material 

 
Fracture Toughness  (MPa√m) 

 
Single Crystal SiC 

 
1.58 ± 0.5 

 
Polycrystalline SiC 

 
1.48 ± 0.6 

 
Bulk SiC 

 
4.6 

 
Bulk SiC ( D.Yang and T.Anderson) 

 
2.18 



www.manaraa.com

 
 

57

 
 
 
 
 

CHAPTER 5 

 

5.1  Conclusions and Recommendations 

 

This chapter reviews the experimental results obtained and contains future 

recommendations for comparing mechanical properties nanoindentation data with other 

methods. 

 

5.1.1  Conclusions 

 

In this work, mechanical properties of the single crystal and polycrystalline 3C-SiC thin 

films were studied using Hysitron Triboindenter in the ambient environment. These films 

were deposited on silicon substrates by the chemical vapor deposition technique.  

Hardness and elastic modulus were measured using nanoindentation tests and compared 

with bulk SiC (Lely Platelet 15R-SiC) properties and the silicon substrate. The effect of 

surface roughness on polycrystalline 3C-SiC thin film mechanical properties was studied. 

The properties of rough polycrystalline SiC was compared with the smooth or polished 

sample. Fracture toughness of the films was determined from the indentation 

experiments. 
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5.1.2  Properties of SiC Films 

 

Modulus and hardness values found from the nanoindentation tests for polycrystalline 

3C-SiC films were 422 + 16 GPa and 32.69 + 3.218 GPa respectively, while single 

crystalline 3C-SiC films elastic modulus and hardness were 410 + 3.18 GPa and 30 + 2.8 

GPa, respectively. Bulk SiC properties were found to be 442 + 16.34 GPa for the elastic 

modulus and 42.76 + 1.19 GPa for hardness. E and H for silicon substrate were found to 

be 172.13 + 7.76 GPa and 12.46 + 0.78 GPa, respectively. From the results one can 

observe that the mechanical properties of the Single and polycrystalline SiC films are 

relatively close to the bulk SiC.  

 

5.1.3  Surface Roughness Effect  

 

RMS roughness of as-deposited polycrystalline SiC was measured to be 53 nm 

approximately and topography images show that the peaks-to-valley depth was around 

273 nm. This unevenness in the surface affected the measurement of the properties of the 

thin films. From the experiments, it was observed that H and E values were not 

comparable with bulk SiC, but did not affect the results. The SiC film surface was then 

polished to an RMS roughness of 2 nm approximately and the H and E values were 

compared with rough SiC film and bulk SiC. The H and E values of as-deposited SiC 

were measured, and found to be 260 + 86.5 GPa and 18.92 + 9.6 GPa respectively, after 

polishing the film.  
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5.1.4  Fracture Toughness of SiC Films 

 

Fracture toughness of SiC films was studied using nanoindentation. Radial cracks were 

initiated by applying relatively higher loads using a sharp Berkovich diamond tip. 

Fracture toughness was calculated from the crack length and the values are found to be 

1.58 ± 0.5 MPa√m for polycrystalline SiC and 1.48 ± 0.6 MPa√m for single crystal 3C-

SiC films. These results were compared with fracture toughness for bulk SiC. From the 

fracture toughness values obtained for both the single and polycrystalline it can be noted 

that they have relatively low values compared to the bulk material. This low values can 

be attributed due to various reasons like, substrate effect or residual stress caused during 

the deposition of the SiC thin films on Si substrate.  

 

5.2  Recommendations and Future Research 

 

Additional experiment could be done to compare the hardness values obtained by 

nanoindentation with a scratch test results. To confirm the values of the fracture 

toughness, an in-depth analysis of the cubic planes need to be studied in order to explain 

the crack propagation in both single crystal and polycrystalline SiC. Nanoindentation 

tests could be conducted in wet environments to observe the changes in fracture 

toughness of these films. 
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